本文介绍 \(\LaTeX\) 的基本使用方法。
1. 上标和下标
a_{1}
x^{2}
a_{1}^{2}
\[ a_{1} \qquad x^{2} \qquad a_{i}^{2} \]
2. 分数
\dfrac{x^{2}}{y + 1}
x^{1/2}
\[ \dfrac{x^{2}}{y + 1} \qquad x^{1/2} \]
3. 开方
\sqrt{x}
\sqrt[3]{y}
\[
\sqrt{x} \qquad
\sqrt[3]{y}
\]
4. 导数
y'
\dfrac{\mathrm{d}y}{\mathrm{d}x}
\dfrac{\partial y}{\partial x}
\[ y’ \qquad \dfrac{\mathrm{d} y}{\mathrm{d} x} \qquad \dfrac{\partial y}{\partial x} \]
5. 积分
\int_{a}^{b} f(x) \mathrm{d}x
\int_{-\infty}^{+\infty} g(x) \mathrm{d}x
\[ \int_{a}^{b} f(x) \mathrm{d}x \qquad \int_{-\infty}^{+\infty} g(x) \mathrm{d}x \]
6. 对数
\log_{2}{x}
\ln{x}
\[ \log_{2}{x} \qquad \ln{x} \]
7. 求和与求积
\sum_{i = 0}^{n} i^2
\prod_{i = 1}^{n} i + 1
\[ \sum_{i = 0}^{n} {i^2} \qquad \prod_{i = 0}^{n} (i + 1) \]
8. 极限
\lim_{x \to 0} \dfrac{\sin{x}}{x} = 1
\[ \lim_{x \to 0} \dfrac{\sin{x}}{x} = 1 \]
9. 矩阵
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}
\[ \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \qquad \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix} \]
10. 数学符号
\begin{array}{ccccccccc}
\lt & \le & \gt & \ge & \neq & \approx & \times & \div & \pm \\
\mp & \cdot & \cup & \cap & \subset & \subseteq & \in & \emptyset & \land \\
\lor & \lnot & \oplus & \forall & \exists & \rightarrow & \Rightarrow & \infty & \nabla &
\end{array}
\[ \begin{array}{ccccccccc} \lt & \le & \gt & \ge & \neq & \approx & \times & \div & \pm \\ \mp & \cdot & \cup & \cap & \subset & \subseteq & \in & \emptyset & \land \\ \lor & \lnot & \oplus & \forall & \exists & \rightarrow & \Rightarrow & \infty & \nabla & \end{array} \]
11. 希腊字母
\begin{array}{cccccccc}
\alpha & \beta & \gamma & \delta & \epsilon & \zeta & \eta & \theta \\
\iota & \kappa & \lambda & \mu & \nu & \xi & \omicron & \pi \\
\rho &\sigma & \tau & \upsilon & \phi & \chi & \psi & \omega &
\end{array}
\[ \begin{array}{cccccccc} \alpha & \beta & \gamma & \delta & \epsilon & \zeta & \eta & \theta \\ \iota & \kappa & \lambda & \mu & \nu & \xi & \omicron & \pi \\ \rho &\sigma & \tau & \upsilon & \phi & \chi & \psi & \omega & \end{array} \]